Coursera

Principles of Computing (Part 2)

About this course This two-part course introduces the basic mathematical and programming principles that underlie much of Computer Science. Understanding these principles is crucial to the process of creating efficient and well-structured solutions for computational problems. To get hands-on experience working with these concepts, we will use the Python programming language. The main focus of …

Principles of Computing (Part 2) Read More »

Probabilistic Graphical Models 2: Inference

About this course Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. …

Probabilistic Graphical Models 2: Inference Read More »

Bitcoin and Cryptocurrency Technologies

About this course To really understand what is special about Bitcoin, we need to understand how it works at a technical level. We’ll address the important questions about Bitcoin, such as: How does Bitcoin work? What makes Bitcoin different? How secure are your Bitcoins? How anonymous are Bitcoin users? What determines the price of Bitcoins? …

Bitcoin and Cryptocurrency Technologies Read More »

Algorithmic Thinking (Part 1)

Overview Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part course builds on the principles that you learned in our Principles of Computing course and is designed to train students in the mathematical concepts and process of “Algorithmic Thinking”, allowing …

Algorithmic Thinking (Part 1) Read More »

Machine Learning: Classification

Overview In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,…). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or …

Machine Learning: Classification Read More »

Practical Machine Learning

About this course One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, …

Practical Machine Learning Read More »

Algorithms, Part II

About this course This course covers the essential information that every serious programmer needs to know about algorithms and data structures, with emphasis on applications and scientific performance analysis of Java implementations. Part I covers elementary data structures, sorting, and searching algorithms. Part II focuses on graph- and string-processing algorithms.All the features of this course …

Algorithms, Part II Read More »

Discrete Optimization

Overview Tired of solving Sudokus by hand? This class teaches you how to solve complex search problems with discrete optimization concepts and algorithms, including constraint programming, local search, and mixed-integer programming. Optimization technology is ubiquitous in our society. It schedules planes and their crews, coordinates the production of steel, and organizes the transportation of iron …

Discrete Optimization Read More »

Algorithmic Thinking (Part 2)

Overview Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part class is designed to train students in the mathematical concepts and process of “Algorithmic Thinking”, allowing them to build simpler, more efficient solutions to computational problems. In part 2 of …

Algorithmic Thinking (Part 2) Read More »

Shopping Cart
  • Your cart is empty.