Overview
What do self-driving cars, face recognition, web search, industrial robots, missile guidance, and tumor detection have in common?
They are all complex real world problems being solved with applications of intelligence (AI).
This course will provide a broad understanding of the basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems.
You will learn about the history of AI, intelligent agents, state-space problem representations, uninformed and heuristic search, game playing, logical agents, and constraint satisfaction problems.
Hands on experience will be gained by building a basic search agent. Adversarial search will be explored through the creation of a game and an introduction to machine learning includes work on linear regression.
Syllabus
Week 1: Introduction to AI, history of AI, course logistics
Week 2: Intelligent agents, uninformed search
Week 3: Heuristic search, A algorithm __Week 4: Adversarial search, games __Week 5: Constraint Satisfaction Problems __Week 6: Machine Learning: Basic concepts, linear models, perceptron, K nearest neighbors __Week 7: Machine Learning: advanced models, neural networks, SVMs, decision trees and unsupervised learning __Week 8: Markov decision processes and reinforcement learning __Week 9: Logical Agent, propositional logic and first order logic __Week 10: AI applications (NLP) __Week 11: AI applications (Vision/Robotics) __Week 12: * Review and Conclusion